Role of endothelial Ca2+ stores in the regulation of hydraulic conductivity of Rana microvessels in vivo.
نویسندگان
چکیده
Vascular permeability is regulated by endothelial cytosolic Ca(2+) concentration ([Ca(2+)](i)). To determine whether vascular permeability is dependent on extracellular Ca(2+) influx or release of Ca(2+) from stores, hydraulic conductivity (L(p)) was measured in single perfused frog mesenteric microvessels in the presence and absence of Ca(2+) influx and store depletion. Prevention of Ca(2+) reuptake into stores by sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) inhibition increased L(p) in the absence of extracellular Ca(2+) influx. L(p) was further increased when Ca(2+) influx was restored. Depletion of the Ca(2+) stores with ionomycin and SERCA inhibition increased L(p) in the presence and the absence of extracellular Ca(2+) influx. However, store depletion in itself did not significantly increase L(p) in the absence of active Ca(2+) release from stores into the cytoplasm. There was a significant positive correlation between baseline permeability and the magnitude of the responses to both Ca(2+) store release and Ca(2+) influx, indicating that the Ca(2+) regulating properties of the endothelial cells may regulate the baseline L(p). To investigate the role of Ca(2+) stores in regulation of L(p), the relationship between SERCA inhibition and store release was studied. The magnitude of the L(p) increase during SERCA inhibition significantly and inversely correlated with that during store release by Ca(2+) ionophore, implying that the degree of store depletion regulates the size of the increase on L(p). These data show that microvascular permeability in vivo can be increased by agents that release Ca(2+) from stores in the absence of Ca(2+) influx. They also show that capacitative Ca(2+) entry results in increased L(p) and that the size of the permeability increase can be regulated by the degree of Ca(2+) release.
منابع مشابه
cGMP modulates basal and activated microvessel permeability independently of [Ca2+]i.
To investigate the mechanisms whereby guanosine 3',5'-cyclic monophosphate (cGMP) modulates microvessel permeability in vivo, we measured changes in microvessel hydraulic conductivity ( L p) and endothelial cytoplasmic Ca2+concentration ([Ca2+]i) in response to the cGMP analogs 8-bromo-cGMP (8-BrcGMP) and 8-( p-chlorophenylthio)cGMP (8-pCPT-cGMP) in the presence and absence of inflammatory stim...
متن کاملSphingosine 1-phosphate prevents platelet-activating factor-induced increase in hydraulic conductivity in rat mesenteric venules: pertussis toxin sensitive.
Sphingosine 1-phosphate (S1P) is a biologically active lipid. In vitro, S1P tightens the endothelial barrier, as assessed by a rapid increase in electrical resistance and a decrease in solute permeability. We hypothesized that this activity of S1P would also occur in vivo. Hydraulic conductivity (Lp), an assessment of endothelial barrier function, was measured in individually perfused venules i...
متن کاملRegulation of capillary hydraulic conductivity in response to an acute change in shear.
The effects of mechanical perturbations (shear stress, pressure) on microvascular permeability primarily have been examined in micropipette-cannulated vessels or in endothelial monolayers in vitro. The objective of this study is to determine whether acute changes in blood flow shear stress might influence measurements of hydraulic conductivity (L(p)) in autoperfused microvessels in vivo. Rat me...
متن کاملPKA Compartmentalization via AKAP220 and AKAP12 Contributes to Endothelial Barrier Regulation
cAMP-mediated PKA signaling is the main known pathway involved in maintenance of the endothelial barrier. Tight regulation of PKA function can be achieved by discrete compartmentalization of the enzyme via physical interaction with A-kinase anchoring proteins (AKAPs). Here, we investigated the role of AKAPs 220 and 12 in endothelial barrier regulation. Analysis of human and mouse microvascular ...
متن کاملMeasuring infiltration rate and hydraulic conductivity in a dry well in a thin overburden
IInfiltration rate and hydraulic conductivity are immensely important parameters for evaluating the hydrology of subsurface environments. Specifically, in disposal wells schemes and in artificial recharge plans both properties must be correctly assessed to better analyze the performance of these installations. In a new research, tanker water and rainfall runoff were injected into a 22.5 m deep ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 284 4 شماره
صفحات -
تاریخ انتشار 2003